An Algebraic Flux Correction Scheme Satisfying the Discrete Maximum Principle and Linearity Preservation on General Meshes
نویسندگان
چکیده
This work is devoted to the proposal of a new flux limiter that makes the algebraic flux correction finite element scheme linearity and positivity preserving on general simplicial meshes. Minimal assumptions on the limiter are given in order to guarantee the validity of the discrete maximum principle, and then a precise definition of it is proposed and analyzed. Numerical results for convection-diffusion problems confirm the theory.
منابع مشابه
Gradient-based nodal limiters for artificial diffusion operators in finite element schemes for transport equations
This paper presents new linearity-preserving nodal limiters for enforcing discrete maximum principles in continuous (linear or bilinear) finite element approximations to transport problems with steep fronts. In the process of algebraic flux correction, the oscillatory antidiffusive part of a high-order base discretization is decomposed into a set of internodal fluxes and constrained to be local...
متن کاملLinearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes
This paper is concerned with the development of general-purpose algebraic flux correction schemes for continuous (linear and multilinear) finite elements. In order to enforce the discrete maximum principle (DMP), we modify the standard Galerkin discretization of a scalar transport equation by adding diffusive and antidiffusive fluxes. The result is a nonlinear algebraic system satisfying the DM...
متن کاملAlgebraic Flux Correction I Scalar Conservation Laws
This chapter is concerned with the design of high-resolution finite element schemes satisfying the discrete maximum principle. The presented algebraic flux correction paradigm is a generalization of the flux-corrected transport (FCT) methodology. Given the standard Galerkin discretization of a scalar transport equation, we decompose the antidiffusive part of the discrete operator into numerical...
متن کاملEdge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in...
متن کاملEnforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Elliptic Problems LAUR-07-3949
The maximum principle is basic qualitative property of the solution of elliptic boundary value problems. The preservation of the qualitative characteristics, such as maximum principle, in discrete model is one of the key requirements. It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D. In this paper we consider how...
متن کامل